Loading [MathJax]/jax/element/mml/optable/MathOperators.js
본문 바로가기
고등수학

공통수학 1 - 1 - 14. 항등식과 나머지 정리 RPM 주요 문제 풀이

by 단디 티쳐 2025. 1. 27.
반응형

1단원 - 14. 항등식과 나머지 정리 RPM 주요 문제 풀이

이 글에서는 RPM 교재의 항등식과 나머지 정리 주요 문제를 효율적으로 푸는 방법을 제공합니다. 자신의 풀이와 비교해 가며 다양한 풀이를 배우고 주요 유형은 반복 학습을통해 자신의 것으로 꼭 체화시키길 바랍니다.

 

RPM : 20p ~ 28p

RPM : 29p ~ 31p 풀이는 다음글 1-15에서 설명하도록 하겠습니다. 

 

"모바일 접속 시 함수가 보이지 않을 수 있습니다. 태블릿이나 컴퓨터 또는 chrome(크롬)을 이용해 접속해 주세요."


RPM 22p 127번

'임의의 실수 x에 대하여' → x에 대한 항등식 입니다.

항등식은 좌변과 우변의 식이 같아야 하고, 어떤 x값을 대입해도 =(등호)는 성립하게 됩니다.

 

풀이1)

나누는 식 x2+x1 은 인수분해가 되지 않으므로 수치대입법을 이용해 모르는 Q(x)를 제거하기 어렵습니다. 

그래서 Q(x)식을 세워 계수 비교법을 이용해 줘야 합니다.

식 자체로 정보를 얻어 Q(x)에 대한 식을 세우는 방법

전개를 해주면,
x3+0x2+5x+a=x3+(k+1)x2+(k+b1)x+3k
k+1=0, 5=k+b1, a=3k
k=1, b=7, a=4
ab=28


풀이2)

x3+5x+a=(x2+x1)Q(x)+bx+3 에서 $ bx + 3$ 항을 이항시켜줍니다. 

식의 정보 해석

 

직접 나누기 이용하면 정확한 Q(x) 구하기 가능하다는게 눈에 보이시나요 ?! 

직접 나누기 방법을 여러번 연습하다보면, 어느 계수가 몫을 정하는 계수인지 알 수 있게 됩니다.

직접 나누기를 이용하여 몫을 구하는 방법

나머지는 0 이므로 b=7, a=4ab=28


RPM 22p 129번

모든 실수 x에 대하여 → x에 대한 항등식 입니다. 

전개하여 계수비교법을 이용해 줄 수도 있지만 , 주어진 식을 보면 (x+2),(x2)의 항이 반복되므로 수치대입법을 이용해 줍니다. 

  • x=2 대입 → 0=164c → ∴ c=4
  • x=2 대입 → 4b=164c4b=32 → b=8
  • x=0 대입 → 8a+2b=0 → ∴ a=2

∴  a2+b2+c2=(2)2+(8)2+(4)2=4+64+16=84

 

추가 풀이:)

항등식은 좌변과 우변의 식이 같아야 합니다. 식의 구조를 이용해서 바로 a,b,c의 값을 구할 수도 있습니다.

 

좌변의 공통되는 (x+2)를 묶어주고, 우변의 공통되는 x2을 묶어주면
(x+2)a(x+2)(x2)+b=x2(2xc)
(x+2)ax24a+b=2x2(xc2)

  • 좌변과 우변의 식이 같기 위해 우변에는 (x+2)가 있어야하고, 좌변에도 x2이 있어야 합니다. 

즉, ax24a+b=2x2, x+2=xc2 이여야 하므로,
a=2, b=8, c=4


RPM 23p 138번

x50+1=a50(x1)50+a49(x1)49++a1(x1)+a0

a홀수들의 합을 구하라고 하였습니다.

 

  • (x1)=1 이면 (x1)짝수=1, (x1)홀수=1
    → 우변의 a짝수 , a홀수 앞의 부호 모두 +
  • x=2 대입
    250+1=a50+a49++a1+a0

 

  • (x1)=1 이면 (x1)짝수=1(x1)홀수=1
    → 우변에 a짝수 앞은 +, a홀수 앞은
  • x=0 대입
    1=a50a49+a1+a0

 

두 식을 연립해주면,

홀수의 계수 합을 구해주는 방법

249=a49+a47++a1


RPM 24p 142번

x4+ax2+bx=(x2x+1)Q(x)+3x3

나누는 식 x2x+1 은 인수분해가 되지 않으므로 수치대입법을 이용해 모르는 Q(x)를 제거 하기 어렵습니다. 그래서 $Q(x)$식을 세워 계수비교법을 이용해 줘야 합니다.

 

좌변이 4차, 우변의 나누는 식이 2차이므로 몫은 2차가 되어야하는데 , 모르는 항을 미지수 두고 전개해서 계수비교를 해줘도 되지만, 계수들을 비교하여 몫을 바로바로 적어줄 수도 있습니다.

  • 좌변의 최고차 계수는 1이므로 몫의 x2의 계수는 1

  • 좌변의 x3의 계수는 0 → 우변의 x3 항은 나누는 식의 x2과 몫의 x나누는 식의 x항과 몫의 x2이 만나 만들어 집니다.
  • 이 둘의 합이 0이 되기 위해 몫의 x의 계수가 1이여야 합니다. 
  • 좌변의 상수항이 3이므로 우변의 나누는 식의 상수항 1과 몫의 상수항이 만나 3이 되야 하므로 몫의 상수항은 3 입니다.
필요한 항만 뽑아 미지수의 개수를 구하는 방법

 

이후 구하고자하는 x2의 계수와 x의 계수를 뽑아주고 답을 구해주면 됩니다.

ba=(1)(3)=2


RPM 26p 158번

f(x)=(x2+x+1)Q(x)+x+7 ... 식①

Q(x)=(x1)Q(x)+2Q(1)=2 ... 식②

 

f(x)=(x31)Q(x)+R(x) , R(x)=?

나누는 식이 삼차이므로 나머지는 이차이하의 다항식입니다. 

 

주어진 조건과 구해야하는 것을 보면 (x2+x+1)(x1)을 곱하면 (x31)이 된다는 것을 알 수 있습니다. 

식②의 Q(x)에 식① 대입
f(x)=(x2+x+1)((x1)Q(x)+2)+x+7
f(x)=(x2+x+1)(x1)Q(x)+2(x2+x+1)+x+7
f(x)=(x31)Q(x)+2x2+3x+9

  • x31을 나누는 식으로 보면 나머지 2x2+3x+9=R(x)
  • 나누는식이 삼차고 나머지가 이차이므로 나누는 식 나머지 관계가 성립한다 할 수 있습니다.


RPM 26p 159번

x^{2026} + x^{2025} + x = (x-1)Q(x) + R

몫에대한 언급만 있고, 나머지에 대한 언급이 없다고해서 나머지가 0인것은 아닙니다.

꼭 나머지를 미지수 잡아두고 확인해 주셔야해요.

  • 식의 양변에 x = 1 을 대입하면 3 = R이므로
    x^{2026} + x^{2025} + x = (x-1)Q(x) + 3 ... 식①

Q(x) = (x+1)Q'(x) + R' \quad \Rightarrow \quad Q(-1) = R' = ?

 

식①의 양변에 x = -1 대입:)

1 - 1 - 1 = -2Q(-1) + 3

-1 - 3 = -2Q(-1)

\therefore Q(-1) = 2 = R'


RPM 27p 162번

f(x-2)f(x+1) = (x-2)Q(x) : 나누어 떨어진다 하였으므로 나머지는 0 입니다. 

 

x=2대입시, 

f(0)f(3) = 0

f(0) = 0 또는 f(3) = 0

 

f(x) = x^3 - ax^2 + x - 3에서 f(0) = -3 \neq 0이므로 f(3) = 0이어야 합니다.

\rightarrow f(3) = 27 - 9a = 0

\therefore a = 3


RPM 27p 163번

'{x}^3의 계수 1인 삼차식 f(x)' → f(x)에 대한 구체적인 정보가 나왔으므로 f(x) 식세울 준비!

 

f(-2) = 2, f(-1) = 2, f(1) = 2

f(x) = 2를 만족하는 x값: -2, -1, 1

f(x) - 2 = 0을 만족하는 x값: -2, -1, 1

f(x) - 2(x+2)(x+1)(x-1)을 인수로 가짐

 

'{x}^3의 계수 1인 삼차식 f(x)'

\therefore f(x) - 2 = 1 \cdot (x+2)(x+1)(x-1)

\therefore f(x) = (x+2)(x+1)(x-1) + 2

 

f(x) = (x+3)Q(x) + R, R=?

f(-3) = R = (-1)(-2)(-4) + 2

\therefore R = -6


RPM 28p 169번

1-9.글의 조립제법과 내림차순 꼴의 항등식에서 추가로 언급했던 문제의 풀이 입니다.

풀이과정은 없었는데 여기서 풀이해보도록 하겠습니다. 

 

(2x+1)의 거듭제곱이 반복되는 유형이라 -\frac{1}{2}로 연달아 조립제법하면 됩니다.

 

문제에서 주어진 식을 나누는 식, 몫, 나머지 관점으로 정리하면

  • 2x^3 - 3x^2 - 4x + 2 = (2x+1)\left(a(2x+1)^2 + b(2x+1) + c\right) + d
  • 조립제법의 제일 왼쪽수는 (2x+1)=0 되는 x값, 즉 x=-\frac{1}{2} 입니다.

조립제법을 연달아 한 것에 대한 결과

  • 조립제법 해석시에는 x의 계수가 1임에 주의해야 합니다.

 

문제에서는 (x+\frac{1}{2})가 아닌 (2x+1)의 거듭제곱이 반복됩니다.

문제의 주어진 꼴로 바꾸기 위해 식의 값은 유지한체 변형시켜 줄 것입니다. 

(x+1/2)반복되는 꼴에서 (2x+1) 반복 되는 꼴로 바꾼 결과


RPM 28p 170번 - 수의 나눗셈에서 나머지 정리의 활용 유형

지난글에서, 수의 나눗셈에서 나머지정리의 활용파트에서 중요한 점 기억나죠? 

 '수의 나눗셈에서 나머지 정리의 활용 문제유형'에서 주의 해야할 점
1. 나누는 수를 최대한 일차식으로 잡아줌 
→ 개념원리 56P 연습문제 115번
2. 최대한 나누는 수를 x-1, x, x+1로 잡아주는 것이 좋음. 
→ RPM 30p 188번
3. 마지막에 나누는 수로 나누었을 때 나머지가 성립하는지 확인 : (나누는 수) > (나머지) > 0
→ RPM 28p 170번

3번 경우에 대해 설명하는 문제 입니다.

RPM 24p 170번의 경우 - { " 나누는 수 < 나머지 " 유형 }

RPM 24p 171번의 경우 - { " 나머지가 음수 " 유형 } 

두 풀이를 비교해보시길 추천합니다!


 

{ " 나누는 수 < 나머지 " 유형 }

  • 1000 = x 라 두면, 
    x^{10} = (x-2)Q(x) + R
  • x = 2 대입
    2^{10} = R
  • \therefore x^{10} = (x-2)Q(x) + 2^{10}
  • x에 다시 1000을 넣어주고, 2^{10} = 2048

∴  1000^{10} = 998 \cdot Q + 2048

 

여기서, 나누는 수가 998, 나머지 2048 관계는 '나누는수 < 나머지'이므로 성립하지 않습니다. 왜? 한 번 더 나눠져야 하기 때문입니다.

즉, 2048이 998로 또 나눠지게 됩니다. 그래서 한번 더 나눠 보면

2048 = 998 \cdot 2 + 52

2048을 998로 나누었을 때 몫은 2, 나머지는 52가 됩니다.

 

이를 결론식에 넣어 다시 정리해 보면,

1000^{10} = 998 \cdot Q + 998 \cdot 2 + 52

나누는 수가 998임이 보이도록 묶어주면 

$ 1000^{10} = 998 \cdot (Q + 2) + 52$

1000^{10}을 998로 나누었을 때 몫 Q+2, 나머지 52 : 나누는 수 > 나머지의 관계가 성립하므로 나머지라 할 수 있습니다. 

\therefore 나머지는 52입니다.


RPM 28p 171번 - 수의 나눗셈에서 나머지 정리의 활용 유형

{ " 나머지가 음수 " 유형 }

  • 97 = x라 두면,
    x^{10} = (x+1)Q(x) + R
  • x = -1 대입
    -1 = R
  • \therefore x^{10} = (x+1)Q(x) - 1
  • x = 97을 다시 넣어주면
    97^{10} = 98Q - 1

$98로 나누었을 때 나머지-1 관계는 성립하지 않습니다. Why? 한 번 더 나눠졌기 때문이죠.


"한번 더 나눠지는 경우"에 대해 잠깐 공부하고 가도록 할께요.

한번 더 나눠진 나눗셈
  • 위의 이미지에서 왼쪽 나누기를 보면, 나머지가 제대로 된 것을 알 수 있습니다.
  • 그렇다면 오른쪽 나누기를 보면 몫이 4가 아니라 5로 되어있고 나머지가 음수의 값이 나왔습니다.

즉, 원래는 몫이 Q여야 한다면 Q+1로 "한번 더 나눠주었기 때문에 " 나머지가 음수가 나왔고 잘못된 나누기라고 할 수 있는 것이죠.

우리는 이 나누기의 관계를 고등수학에서는 식으로 (가로로) 써서 적어주게 됩니다.

식변형을 통해 올바른 나머지로 고치는 과정이 이미지의 오른쪽 식입니다. 

 

  • 9 = 2 \times 5 - 1 은 값은 맞지만, 나누는 수- 몫- 나머지 관점에서는 잘못된 식이죠?
  • (잘못된 몫) = (원래의 몫) + 1 의 관계 이므로 5 = 4 + 1 로 풀어 적어줍니다.
  • 이후 전개하여 정리해주면
  • 9 = 2 \times4 + 1로 나누는 수- 몫- 나머지 관점에서 바른 식으로 정리해 줄 수 있습니다. 

이 생각을 문제풀이에 적용시켜보면, 

97^{10} = 98Q - 1 의 결론식에서 Q는 잘못된 몫입니다. 

  • (잘못된 몫) = (원래의 몫) + 1
  • Q = (원래의 몫) + 1
  • 즉, Q = (Q-1) + 1로 풀어줘야 합니다.

 

97^{10} = 98Q - 1 

97^{10} = 98 \times (Q-1+1) - 1
97^{10} = 98(Q-1) + 98 - 1
97^{10} = 98(Q-1) + 97

$ 97^{10} $을 98로 나누었을 때 나머지는 97로 (나누는 수) > (나머지)의 관계가 성립하므로 ∴나머지=97


"추가로 필요한 자료/ 문제에 대한 다른 풀이방법/ 글을 읽다 궁금한 점은 댓글로 남겨주세요!"

 

"이 블로그는 개념원리 교재를 참고하여 학습 내용을 정리하였으며, 저작권 보호를 위해 원문 문제는 제공하지 않고 제 풀이와 학습 팁을 중심으로 구성하여 독창적인 풀이와 함께 효율적인 학습 방법을 공유합니다."

 

반응형

"); wcs_do();